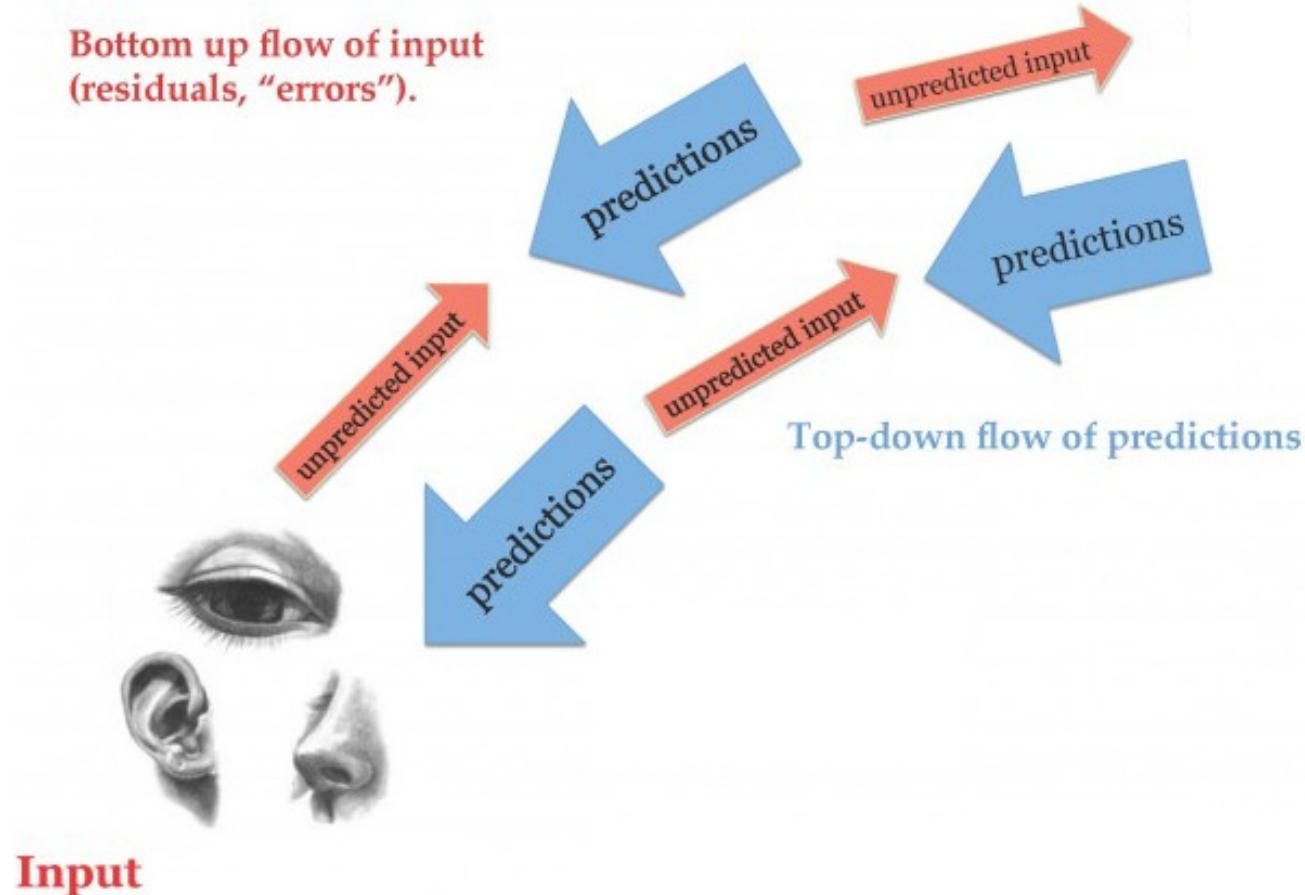


A Predictive Processing Account of the Developing Brain

Johan Kwisthout – ICDL / EpiRob 2016 workshop

A novel view of the brain

“...essentially a sophisticated hypothesis-testing mechanism...”



A novel view of the brain

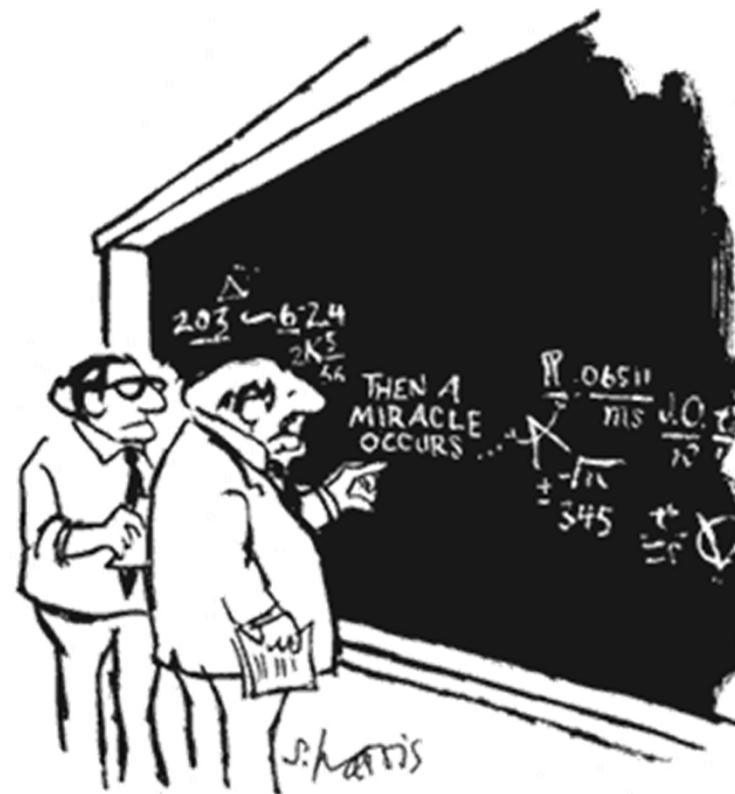
Explanatory power

Neurophysiological evidence

Rich formal machinery

... but lacking one crucial ingredient!

Where Predictive Processing is silent...

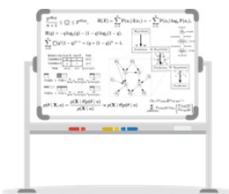


"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

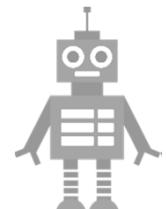
Overview of this presentation

Predictive Processing as **unifying** account

Concrete **computational** framework



How to **develop** generative models?



Robo-havioral research **methodology**

Predictive Processing

Brain as **prediction machine**

- The brain continuously makes predictions about future sensory evidence based on its current best model of the causes of such evidence

Bayesian Brain

- The brain combines prior knowledge with sensory evidence (from various sources) in a Bayesian way

Hierarchical Brain

- The brain is organized in a hierarchical way, where “high level” information influences “low level” information and vice versa

Predictive coding and predictive processing

Computational level Conceptual description	Predictive Processing [e.g., Clark] <i>Keywords:</i> predictions at various levels of detail, precision-weighted prediction errors, hypothesis updating, model revision	
Algorithmic level Process-level description	Predictive Coding [e.g., Friston] <i>Keywords:</i> low-level cognition, continuous Gaussian models, variational Bayes approximations	Belief Propagation [e.g., Sanborn] <i>Keywords:</i> high-level cognition, structured discrete models, sampling approximations, particle filtering
Implementational level Neuronal level description	Cortical Microcircuits [e.g., Bastos] <i>Keywords:</i> pyramid cells, feedforward-feedback connections	Networks of Spiking Neurons [e.g., Maass] <i>Keywords:</i> Boltzmann machines, switching rate, noisy spikes

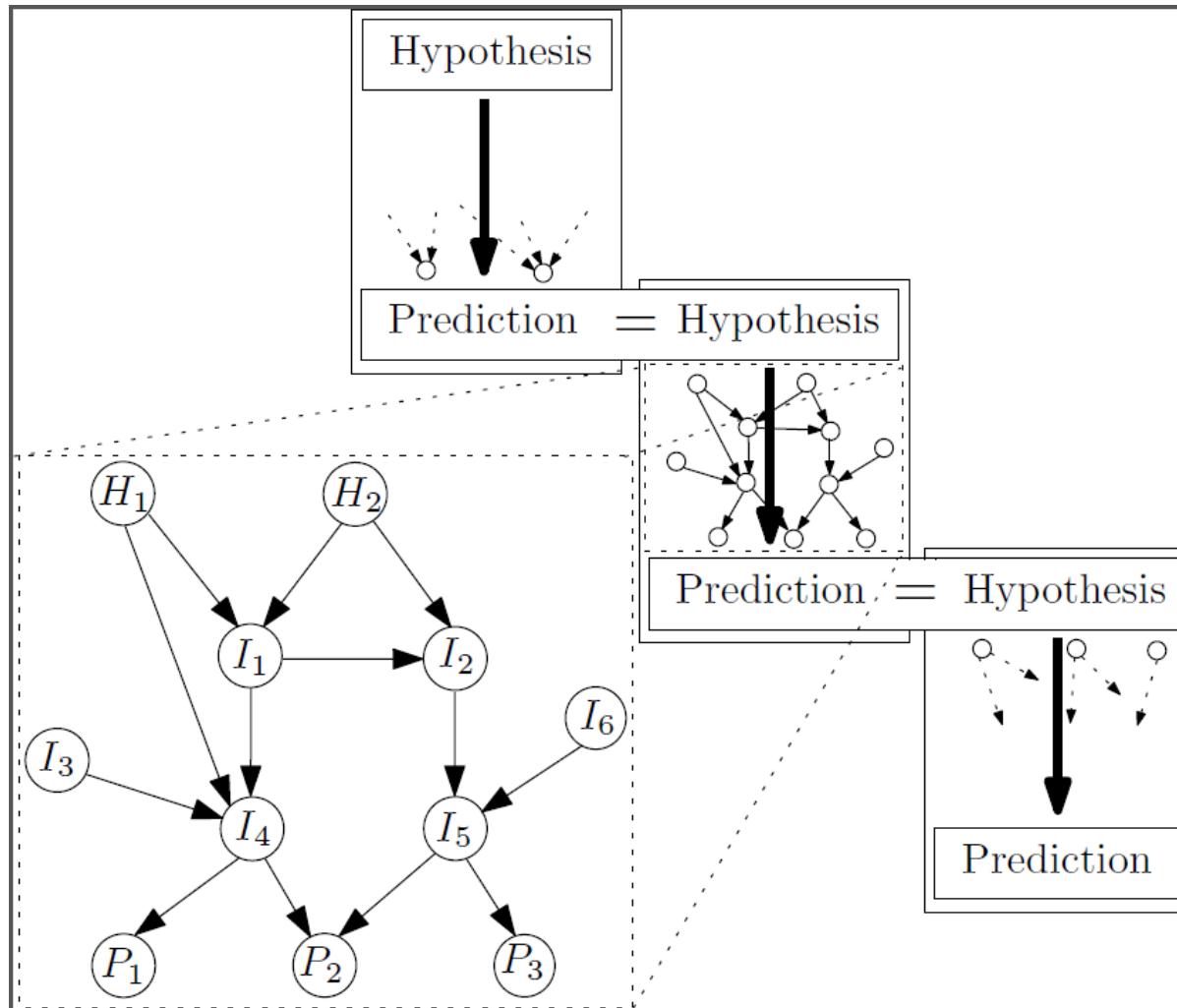
Key sub-processes

- Making **predictions** of expected input based on the generative models that relate causes and effects
- Comparing predicted inputs with actual inputs and **computing precision-weighted prediction error**
- **Explaining away** prediction errors (minimizing overall prediction error)
- **Learning** and updating generative models based on the precision of the prediction errors

From conceptual idea to formal model

- Predictive processing is assumed to **explain and unify all of cognition**, including higher cognition
- To model, e.g., complex social interactions, Theory of Mind, intention recognition, and problem solving, we need **rich enough** knowledge structures to model complex, non-monotone, non-linear dependences
 - We argue (Otworowska et al., 2014) that simple Gaussian models are **not sufficiently rich** models for higher cognition
 - We propose to use **causal Bayesian networks** as knowledge structures instead to describe predictive processing

Computational model – prediction generation



Hypothesis variables

$$Hyp = \{H_1, H_2\}$$

Prediction variables

$$Pred = \{P_1, P_2\}$$

Intermediate

variables

$$Int = \{I_1, \dots, I_6\}$$

Computational model – error estimation

- Prediction and Observation are **probability distributions** over the prediction variables Pred
- Prediction is defined as computing the **posterior distribution** $\text{Pr}_{(\text{Pred})}$ given the parameters in the network
- Prediction error is set difference $\text{Pr}_{(\text{obs})} - \text{Pr}_{(\text{Pred})}$
- Estimating the *size* of this error is defined as computing the KL-divergence or **relative entropy** between predicted and observed distribution

$$D_{\text{KL}}(\text{Pr}_{(\text{Pred})} \parallel \text{Pr}_{(\text{Obs})}) = \sum_{\mathbf{p} \in \Omega(\text{Pred})} \text{Pr}_{\text{Pred}}(\mathbf{p}) \log \left(\frac{\text{Pr}_{\text{Pred}}(\mathbf{p})}{\text{Pr}_{\text{Obs}}(\mathbf{p})} \right)$$

Computational model – error minimization

- Prediction error minimization: “doing something” such that $D_{KL}(Pred \parallel Obs)$ is minimized
- Several possible ways of “**doing something**” (Kwisthout et al, 2016):
 - Revising beliefs about current state of the world
 - Gathering information (e.g., look around)
 - Active inference (move your arm)
 - Modulate model by contextual influences (oh yeah, I’m on the moon – less gravity!)
- In this talk: long-term development / change of model

Building generative models

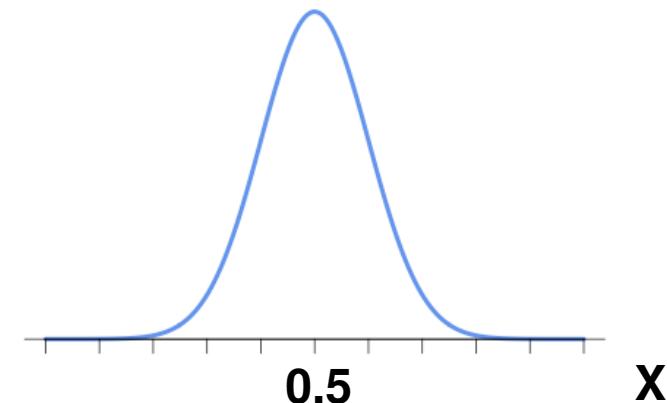
- **Thought experiment:** let's assume I give you a coin and tell you that it may or may not be biased to either side, what would your predicted outcome be?

$$P(\text{Heads}) = 0.5 \quad P(\text{Tails}) = 0.5$$

- But why? According to the Jaynesian principle of maximum entropy your prediction will be such that it carries no information that is not actually there
- This happens to be the uniform distribution

Building generative models

- **Second order** probability distribution

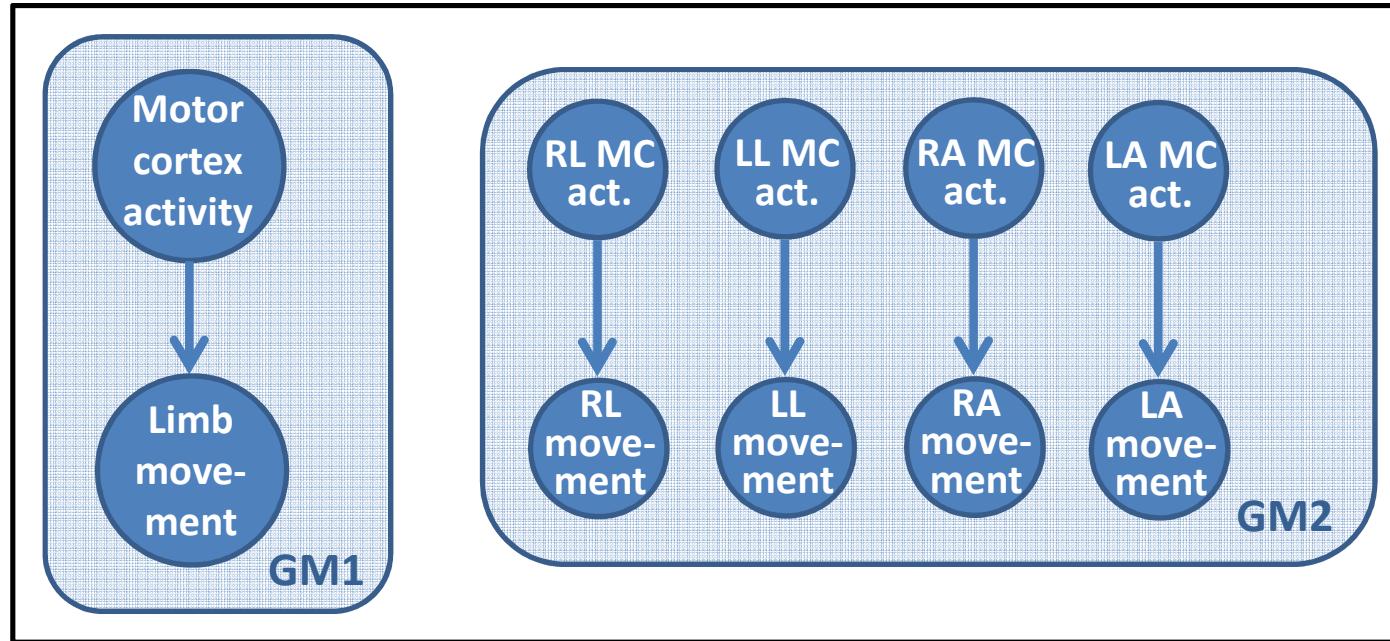


- The precision of this distribution is the inverse variance
- It indicates the confidence you have in this distribution
- This will change, using Bayesian updating, to a more narrow distribution given more evidence

Updating or developing generative models?

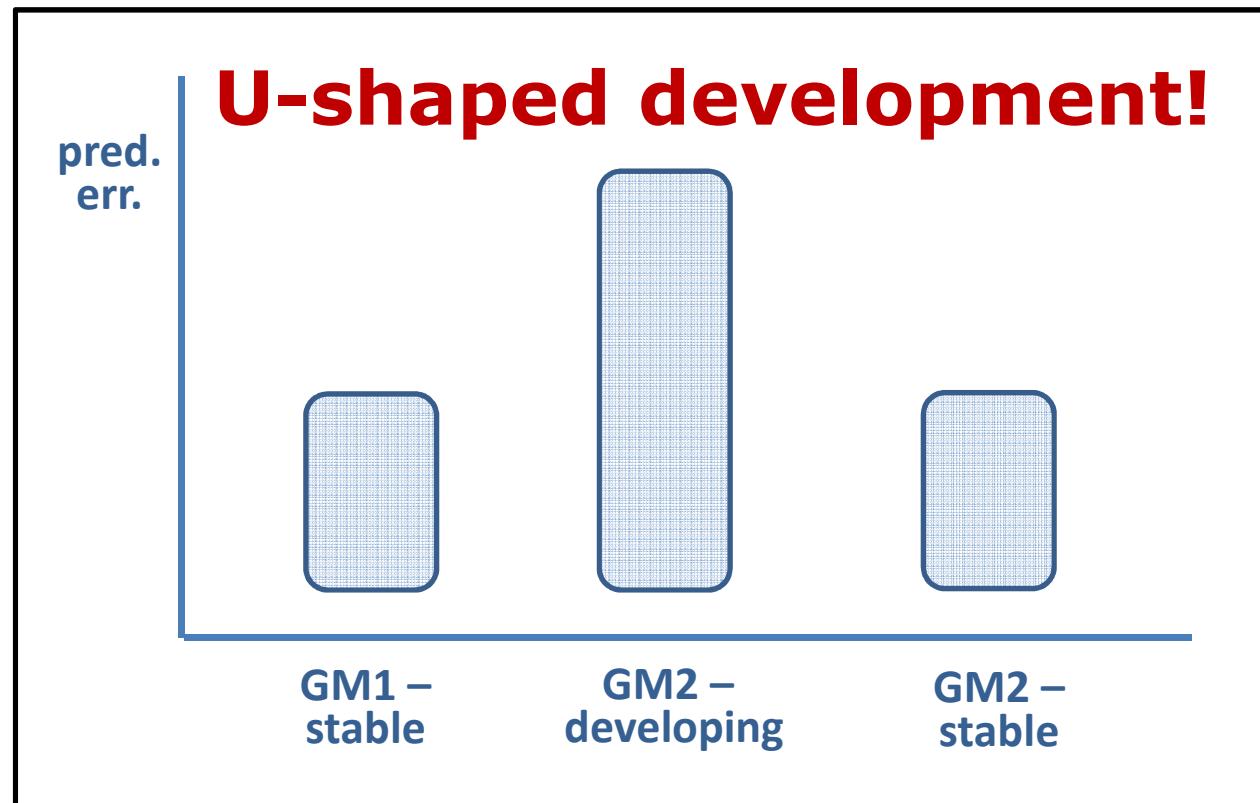
- Generative models are updated using **precision-weighted prediction errors** – if there is lots of reducible uncertainty, precision of the prediction error is higher than when all the uncertainty is irreducible
- But this already assumes that there is a generative model **in the first place**! We need to know that “outcome of coin toss” is a binary variable with Heads and Tails as possible values
- But how do we **develop** such generative models in the first place? Where do the hypotheses come from, how are new hypotheses **integrated** in existing models?

From lower to higher detailed models



- Proposed rough idea: We start with very coarse and broad models (like GM1) and **refine** them to more detailed models over time

From lower to higher detailed models



- This leads to this particular **pattern** of prediction errors

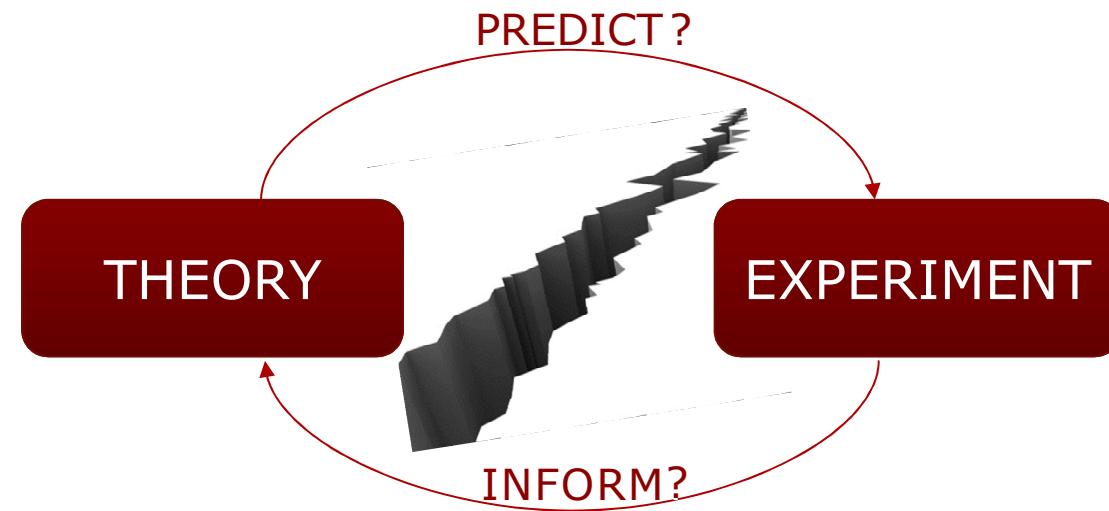
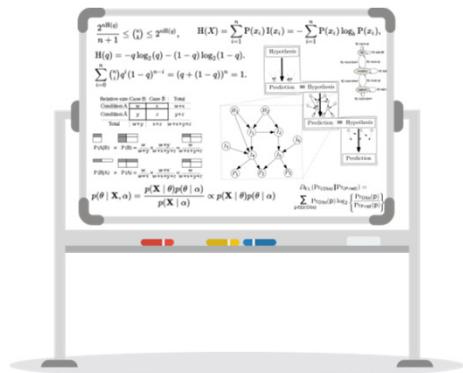
Many open questions

- Currently my students are working on many (theoretical, computational, and developmental) **models and theories** based on this principle
- E.g., how are initial “least detailed” models generated based on isolated experiences that are generalized? What triggers a model revision? If we (e.g.) ‘split’ a variable, how is this computationally realized
- Challenge: we cannot just take a computational model of the shelf to base our theory on! They **don’t exist!**
- Probability theory etc. **assumes** a given state space

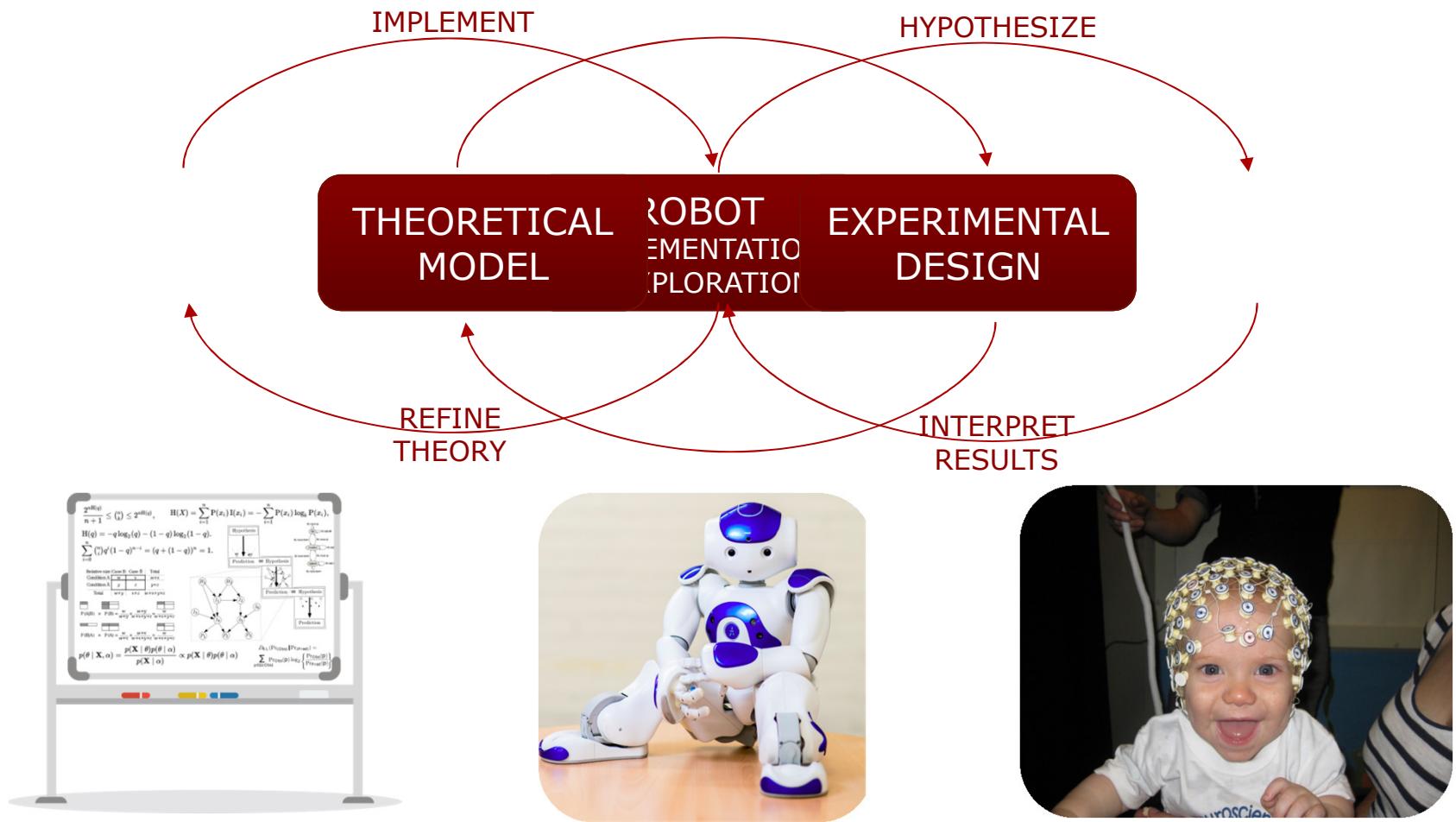
Many challenges

- We use modelling using a framework for which **part of the math** is yet to be developed
- We aim to contribute computational models to a unifying theory of the brain that paints in rather **broad strokes**
- We want our theorizing and models to **inform** and **be informed** by experimental infant studies

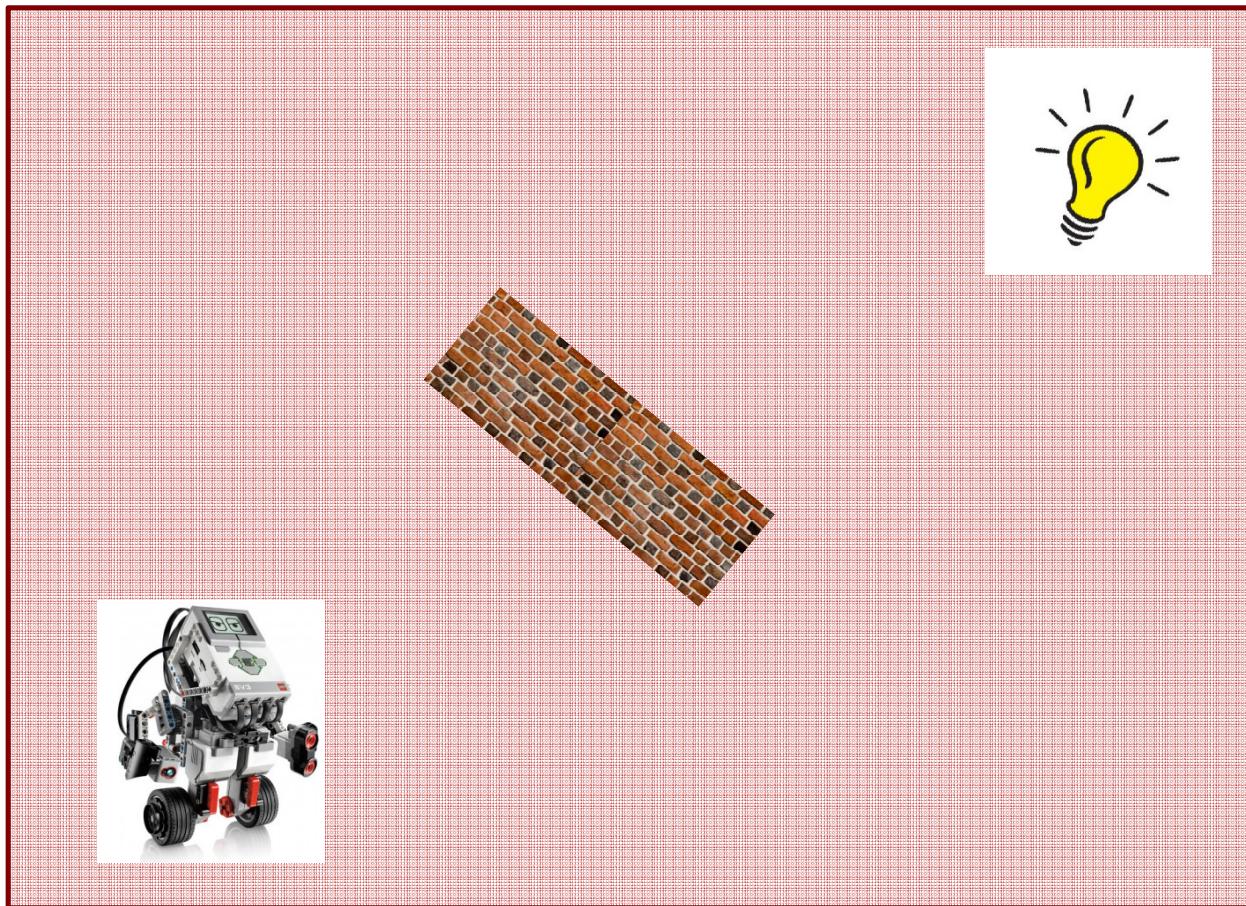
Research methodology



Research methodology



Implementing and exploring

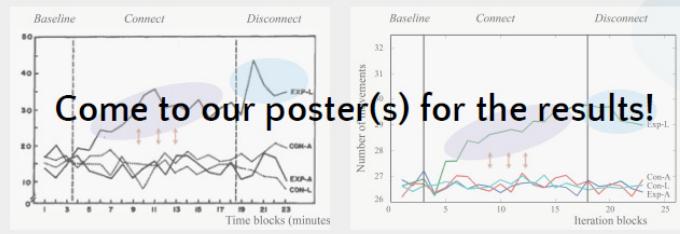


See our posters!

The mobile-paradigm as a measure of infants' sense of agency: Insights from babybot simulations

Lorijn Zaadnoordijk, Maria Otworowska, Johan Kwisthout, Sabine Hunnius, Iris van Rooij

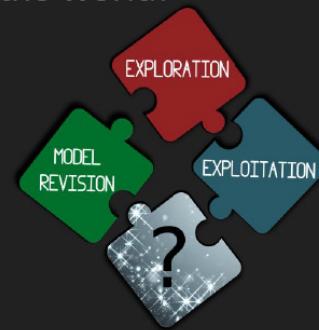
- Developing sense of agency
- Mobile paradigm
- Simulated infant:
 - Operant conditioning mechanism
 - Incapable of causal learning
 - Proof of concept
- Are the observed behavioral patterns evidence for causal learning?



Causal learning in the crib: A predictive processing formalization and babybot simulation

Maria Otworowska, Lorijn Zaadnoordijk, Erwin de Wolff, Johan Kwisthout, Iris van Rooij

- Causal learning in Predictive Processing
- How do infants learn generative models of how their actions cause events in the world?



POSTER: Full formalization, simulations, results and **highly relevant** conclusions!